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We have defined a tecton as a molecule whose interactions 
are dominated by specific attractive forces that induce the 
assembly of aggregates with controlled geometries; molecular 
tectonics is then the art and science of supramolecular construc­
tion using tectonic subunits.3 Hypothetical tecton 1 with four 
tetrahedrally oriented sticky sites (•) is designed to generate 
diamondoid networks or related three-dimensional lattices (eq 
1). For example, intermolecular hydrogen bonding of the 
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tetrahedrally oriented4 pyridone rings in tecton 2 directs the self-
assembly of an interpenetrating diamondoid network that 
enclathrates guest molecules in large rectangular channels.3,56 

We have now demonstrated that the strategy of molecular 
tectonics can be used to assemble a wide variety of ordered 
three-dimensional organic networks and that these assemblies 
have some of the desirable properties of zeolites and related 
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inorganic materials, including high structural integrity, poten­
tially large void volumes, and adjustable microporosity. 

In crystals of clathrate 2'2CH3CH2CH2COOH, the average 
distance between the tetrahedral centers of adjoining tectons is 
19.7(1) A, the channels are approximately 4 x 8 A in diameter,7 

and 24% of the total volume is occupied by enclathrated 
guests.8,9 To construct contracted diamondoid networks with 
shorter intertectonic separations, we synthesized tecton 3. 
Compound 3 could be prepared conveniently in 52% overall 
yield from 5-bromo-2-(phenylmethoxy)pyridine12 by bromine-
lithium exchange (BuLi), subsequent addition of SiCLt, and 
deprotection (CF3COOH, 25 0C)13 of the intermediate tetrapy-
ridylsilane 4.14 Crystallization of tecton 3 from mixtures of ether 
and carboxylic acids yielded a series of clathrates of approximate 
compositions 34 CH3COOH, 3-4CH3CH2COOH, 3-CH3(CH2)3-
COOH, and 3-0.5CH3(CH2)3COOH-lCH3COOH, and their 
structures were determined by X-ray crystallography.15 As 
expected, clathrate 3'4CH3CH2COOH forms a diamondoid 
network with an average intertectonic separation of 11.7(1) A 
(Figure 1). Despite the shorter separation, the network is 
perforated by large square channels with diameters of ap­
proximately 6 A,7,9 which selectively enclose guest molecules 
of propionic acid. Fully 53% of the volume of the crystals is 
occupied by guests.8,9 The guest volume is exceptionally large 
because the diamondoid network in clathrate 3-4CH3CH2COOH 
is only doubly interpenetrating, whereas the network defined 
by clathrate 2-2CH3CH2CH2COOH is 7-fold interpenetrating.3 

Diamondoid assemblies built from tectons 2 and 3 cannot 
withstand an extensive loss of enclathrated guests because the 
network of hydrogen bonds is not strong enough to resist forces 
favoring close packing. Nevertheless, the following experiment 
demonstrates that the networks are porous enough to permit 
exchange and robust enough to remain intact. Suspending 
crystals of clathrate 3-0.5CH3(CH2)3COOH-lCH3COOH in 
acetic acid/ether (25 0C, 30 min) causes essentially complete 
internal replacement of valeric acid by acetic acid, as measured 
by 1H NMR spectroscopy; moreover, subsequent study by X-ray 
crystallography shows that the space group remains the same 
and the cell dimensions do not change substantially. Because 
crystallization of tecton 3 from valeric acid/ether and acetic acid/ 
ether produces clathrates with distinctly different unit cells, this 
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Figure 1. ORTEP drawing of part of the diamondoid network present 
in crystals of clathrate 34CH3CH2COOH. The view is parallel to the 
channel axes and shows the cross sections of four adjacent channels 
and enclathrated molecules of propionic acid. Non-hydrogen atoms are 
represented by ellipsoids corresponding to 40% probability. All 
hydrogen atoms in tecton 3 are omitted for clarity, while those in 
propionic acid are shown as spheres of arbitrary size. Hydrogen bonds 
are represented by narrow lines. 

experiment establishes that exchange occurs not by recrystal-
lization, with significant movement of tectonic subunits, but 
rather by replacement of guests within an intact microporous 
network.16 

Diamondoid networks are favored because they accommodate 
nominally tetrahedral tectons 2 and 3 and permit efficient 
interpenetration; however, other three-dimensional lattices are 
also conceivable, particularly when the tecton or its inter-
molecular interactions are designed to be susceptible to defor­
mations. In a similar way, small variations in the metal-
oxygen—metal angles in zeolites allow nominally tetrahedral 
Si04 and AIO4 units to generate a rich variety of three-
dimensional networks.17 We therefore decided to replace the 
central atom of silicon in tecton 3 by tin, thereby producing a 
tecton 5 with a core more susceptible to angular deformations.18 

Tecton 5 was synthesized from 5-iodo-2-pyridone19 in 33% 
overall yield by O-silylation (TBDMS-Cl, N(C2Hs)3), followed 
by iodine—lithium exchange (BuLi), addition of SnCU. and 
desilylation (CH3COOH, 25 0C) of the resulting tetrapyridyl-
stannane. Crystallization of tecton 5 from valeric acid/hexane 
yielded clathrate 5-CH3(CH2)3COOH, and its structure was 
determined by X-ray crystallography.20 Each tecton is linked 
to four neighbors by direct hydrogen bonding of pyridone rings 
to create cyclic quartets, which then interlock to build a novel 
network of parallel four-sided stacks (Figure 2). Each stack 
has an open diameter of approximately 9 x 2 A,6 creating 
channels selectively filled with well-ordered molecules of valeric 
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Figure 2. ORTEP view of superimposed unit cells of clathrate 
5"CH3(CH2>3COOH showing a single channel defined by stacked 
quartets. Pyridones lying in the ac plane are doubly hydrogen bonded, 
while those lying in the ab plane are singly hydrogen bonded. Each 
channel is surrounded by eight parallel channels, all filled with valeric 
acid. Hydrogen atoms are shown as spheres of arbitrary size, and other 
atoms are represented by ellipsoids corresponding to 40% probability. 
Hydrogen bonds are indicated by narrow lines. 

acid.21 Two features permit nominally tetrahedral tecton 5 to 
form cyclic quartets instead of the cyclic hextets characteristic 
of diamondoid networks: (1) Two of the four pyridone— 
pyridone interactions that link tecton 5 into quartets involve 
only a single hydrogen bond, so the pyridone rings do not need 
to be coplanar. (2) Bond angles at the central atom of tin in 
tecton 5 accept substantial deformations. For example, the 
C-Si-C angles in diamondoid clathrate 3-4CH3CH2COOH 
range only from 108° to 110°, while the C-Sn-C angles in 
nondiamondoid clathrate 5-CH3(CH2)3COOH vary from 102.99-
(16)° to 119.66(16)°. 

These observations are important because they suggest that 
clever application of the strategy of molecular tectonics can be 
used to build an unlimited range of ordered three-dimensional 
organic networks with some of the desirable properties of 
zeolites and related inorganic materials, including high structural 
integrity, potentially large void volumes, and adjustable mi-
croporosity. 

Acknowledgment. We are grateful to the Natural Sciences 
and Engineering Research Council of Canada, the Ministere de 
l'Education du Quebec, and the Canada Council for financial 
support. 

Supplementary Material Available: Spectroscopic and 
analytical data for tectons 3 and 5 and intermediates used in 
their synthesis and crystallographic data, descriptions of structure 
determinations, and tables of atomic coordinates and isotropic 
thermal parameters, bond lengths and angles, and anisotropic 
thermal parameters for clathrates 3-4CH3CH2COOH and 
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